УДК 517.925.51

О СПОСОБЕ РЕШЕНИЯ ЛИНЕЙНОЙ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 3-ГО ПОРЯДКА И ПОСТРОЕНИЯ ФАЗОВОГО ПОРТРЕТА

Прозоровский А. А.

Ст. преподаватель

Московский государственный технический университет им. Н.Э. Баумана Москва, Россия

Аннотация В статье подробно разобран способ решения линейной системы дифференциальных уравнений 3-го порядка и построения фазового портрета. Приведен пример. Представленные материалы могут быть интересны студентам, увлекающимся математикой и участвующим в олимпиадах.

Ключевые слова: система дифференциальных уравнений, фазовый портрет, устойчивость решения.

ON THE METHOD OF SOLVING 3RD-ORDER LINEAR SYSTEM OF DIFFERENTIAL EQUATIONS AND MAKING A PHASE PORTRAIT

Prozorovsky A. A.

Senjor lecturer

Bauman Moscow State Technical University

Moscow. Russia

Abstract The article discusses in detail the method of solving 3rd order linear system of differential equations and making a phase portrait. An example is given. The presented materials may be of interest to students who are interested in mathematics and participate in Olympiads.

Keywords: system of differential equations, phase portrait, stability of a solution

В теории устойчивости решений обыкновенных дифференциальных уравнений хороша разработана методика анализа устойчивости решений линейных систем уравнений по корням характеристического уравнения [1,3]. Эти системы имеют, как правило, второй порядок, тогда как системы третьего порядка встречаются в литературе не часто.

Рассмотрим линейную однородную систему дифференциальных уравнений третьего порядка с постоянными коэффициентами:

$$\dot{\vec{x}} = A\vec{x} \iff \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{1}$$

Для его решения вполне применимы определение устойчивости и теоремы Ляпунова об устойчивости [1]. По общей методике, составим характеристическое уравнение

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = 0 \iff \lambda^3 + \alpha \cdot \lambda^2 + \beta \cdot \lambda + \gamma = 0$$
 (2)

Его решением будут три числа (действительные или комплексные): $\lambda_1, \lambda_2, \lambda_3.$

Фазовым пространством рассматриваемой системы (1) является трёхмерное пространство \mathbb{R}^3 с системой координат Охух. Матрица системы определяет собственные векторы оператора. Решение системы можно разложить по базису собственных векторов оператора

$$\vec{x} = \xi_1 \overrightarrow{h_1} + \xi_2 \overrightarrow{h_2} + \xi_2 \overrightarrow{h_2}$$

где

$$\xi_1 = C_1 e^{\lambda_1 t}, \xi_2 = C_2 e^{\lambda_2 t}, \xi_3 = C_3 e^{\lambda_3 t}$$
(3)

Получили параметрические уравнения фазовой траектории в системе координат, осями которой являются инвариантные прямые.

При построении фазового портрета системы трех дифференциальных уравнений (1) нужно сначала построить траектории на инвариантных подпространствах, расположенных ортогонально. Переход к интерпретации в Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

трехмерном пространстве осуществляется, если воспользоваться тем, что проекция траектории в фазовом пространстве на инвариантное подпространство вдоль другого инвариантного подпространства дает в нем также фазовую траекторию. В зависимости от расположения собственных корней характеристического уравнения на комплексной плоскости возможны различные картины фазовых траекторий в пространстве \mathbb{R}^3 , но все они получаются сложением движений по фазовым траекториям в двумерных пространствах.

Приведем ряд частных случаев, связанных с корнями характеристического уравнения.

Случай 1. $\lambda_1 < 0, \ \lambda_2 < 0, \ \lambda_3 < 0, \ \lambda_i \in R$ — сжатие по трем направлениям (Рисунок 1).

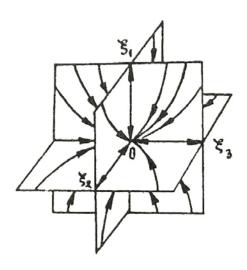


Рисунок 1 – Фазовый портрет (случай 1) [2]

Случай 2. Re $(\lambda_{2,3}) < \lambda_1 < 0$ — сжатие по направлению $O\xi_1$, вращение с более быстрым сжатием в плоскости ξ_2 O ξ_3 (Рисунок 2).

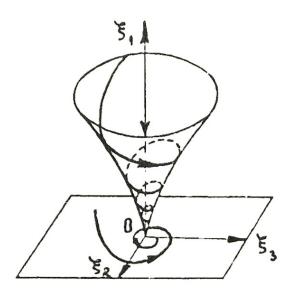


Рисунок 2 – Фазовый портрет (случай 2) [2]

Случай 3. Re $(\lambda_{2,3})$ < 0 < λ_1 — растяжение по направлению $O\xi_1$, вращение со сжатием в плоскости ξ_2 O ξ_3 (Рисунок 3).

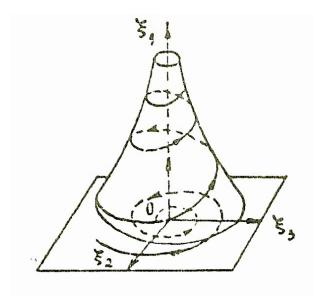


Рисунок 3 – Фазовый портрет (случай 3) [2]

Случай 4. $\lambda_1 < \text{Re }(\lambda_{2,\,3}) < 0$ — сжатие по направлению $O\xi_1$, вращение с более медленным сжатием в плоскости ξ_2 O ξ_3 (Рисунок 4).

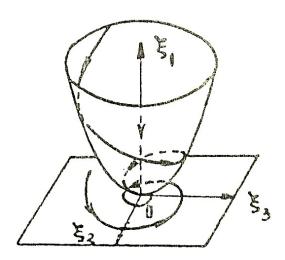


Рисунок 4 – Фазовый портрет (случай 4) [2]

Случай 5. $\lambda_1=0,\,\lambda_2\neq0,\,\lambda_3\neq0$ — движение в плоскости ξ_2 О ξ_3 , плоские случаи — см. [1].

Случай 6. $\lambda_1 \in \mathbb{R}$, Re $(\lambda_{2,3}) = 0$ – движение по поверхности цилиндра (Рисунок 5).

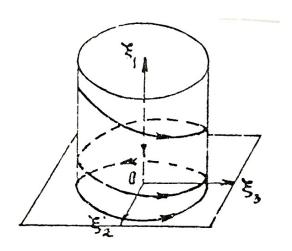


Рисунок 5 – Фазовый портрет (случай 6) [2]

В случае изменения знака у действительного собственного значения или изменения знака у действительной части комплексного собственного

значения получим аналогичные картины, только направление движения изменяется.

Следовательно, нулевое решение системы трех линейных дифференциальных уравнений (1) устойчиво тогда и только тогда, когда $Re \ \lambda_i < 0,$ i=1,2,3.

Рассмотрим конкретный пример. Пусть матрица А имеет вид:

$$A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 2 & -1 & 3 \end{pmatrix}.$$

Составляем характеристическое уравнение системы:

$$\begin{vmatrix} 3 - \lambda & 1 & -1 \\ 1 & 2 - \lambda & 0 \\ 2 & -1 & 3 - \lambda \end{vmatrix} = 0, \qquad \lambda^3 - 8\lambda^2 + 22\lambda - 20 = 0.$$

Получим корни характеристического уравнения: $\lambda_1 = 2$, $\lambda_2 = 3 + i$, $\lambda_3 = 3 - i$.

Найдем собственный вектор, соответствующий $\lambda_1 = 2$, координаты которого удовлетворяют системе однородных алгебраических уравнений:

$$\begin{cases} x_1 + y_1 - z_1 = 0 \\ x_1 = 0 \\ 2x_1 - y_1 + z_1 = 0. \end{cases}$$

Фундаментальным решением системы будет одно, равное

$$\overrightarrow{h_1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Найдем собственный вектор для комплексного корня характеристического уравнения. Вектор находится из решения системы уравнений:

$$\begin{cases} -ix_2 + y_2 - z_2 = 0 \\ x_1 - (1+i)y_2 = 0 \\ 2x_1 - y_2 - iz_2 = 0. \end{cases}$$

Ранг матрицы этой системы уравнений равен двум, так как

$$\begin{vmatrix} -i & 1 \\ 1 & -(1+i) \end{vmatrix} \neq 0.$$

Отбрасывая третье уравнение, получаем:

$$ix_2 + y_2 - z_2 = 0,$$

 $x^2 + (1+i)y_2 = 0.$

Тогда

$$x_{2,3} = (1 \pm i)y_2$$
, $z_{2,3} = (\mp i + 2)y_2$.

Следовательно, при $y_2 = 1$

$$\vec{h} = \overrightarrow{h_2} - i\overrightarrow{h_3} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - i\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}; \qquad \vec{h_2} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \qquad \vec{h_3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Общее решение системы дифференциальных уравнений имеет вид:

$$\binom{x}{y}_{z} = C_1 \binom{0}{1}_{1} e^{2t} + \left\{ C_2 \left(\binom{1}{1}_{2} \cos t + \binom{-1}{0}_{1} \sin t \right) + C_3 \left(\binom{-1}{0}_{1} \cos t - \binom{1}{1}_{2} \sin t \right) \right\} e^{3t}.$$

Уравнение инвариантной прямой будет:

$$\frac{x}{0} = \frac{y}{1} = \frac{z}{1}.$$

Уравнение инвариантной плоскости:

$$\begin{vmatrix} x & 1 & -1 \\ y & 1 & 0 \\ z & 2 & 1 \end{vmatrix} = 0 \quad \Leftrightarrow \quad x - 3y + z = 0.$$

Для построения фазового портрета системы сначала построим фазовую траекторию в плоскости ξ_2 О ξ_3 (неустойчивый фокус), затем определим направление движения по оси О ξ_1 . Складывая два движения, получим фазовую траекторию, изображенную на Рисунке 6.

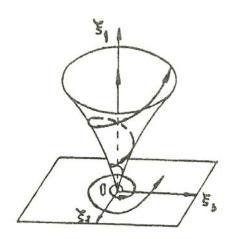


Рисунок 5 – Фазовый портрет системы [2]

Заключение

Изложен способ нахождения решения линейной системы дифференциальных уравнений третьего порядка, анализа его устойчивости и построения фазового портрета.

Библиографический список

- 1. Агафонов С. А., Герман А. Д., Муратова Т. В. Дифференциальные уравнения: учебник для втузов / Агафонов С. А., Герман А. Д., Муратова Т. В.; ред. Зарубин В. С., Крищенко А. П. 2-е изд. М.: Изд-во МГТУ им. Н. Э. Баумана, 2000. 347 с.
- 2. Арнольд В.И. Геометрические методы в теории обыкновенных дифференциальных уравнений. 4-е изд. М.: МЦМНО,2012. 384с.: ил.
- 3. Добрица Б.Т., Янов И.О. Системы дифференциальных уравнений: Методические указания. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 44 с.

Оригинальность 77%