УДК 631.527: 633.854.78

ПОДСОЛНЕЧНИК В КОНКУРСНОМ СОРТОИСПЫТАНИИ ТАМБОВСКОГО НИИСХ

Иванова О. М.

ведущий научный сотрудник, кандидат с.-х. наук

Тамбовский научно-исследовательский институт сельского хозяйства - филиал ФГБНУ "ФНЦ им. И.В. Мичурина",

Россия, г. Тамбов

Ветрова С. В.

научный сотрудник

Тамбовский научно-исследовательский институт сельского хозяйства - филиал ФГБНУ "ФНЦ им. И.В. Мичурина"

Россия, г. Тамбов

Ерофеев С.А.

ведущий научный сотрудник

Тамбовский научно-исследовательский институт сельского хозяйства - филиал ФГБНУ "ФНЦ им. И.В. Мичурина",

Россия, г. Тамбов

Аннотация

В статье представлены перспективные линии подсолнечника селекции Тамбовского НИИСХ – филиал ФГБНУ «ФНЦ им. И.В. Мичурина». За годы проведения работ в питомнике конкурсного сортоиспытания (КСИ) было выделено 4 перспективных образца селекции Института. Урожайность данных линий в среднем за три года исследований составила 2,06-2,34 т/га. Наивысшая прибавка урожайности относительно контроля сорт Спартак была получена у линии Чакинский 456, и составила 0,35 т/га.

Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

Ключевые слова: селекция, подсолнечник, сорт, урожайность, погодные условия.

SUNFLOWER IN THE COMPETITIVE VARIETY TESTING OF THE TAMBOV NIISH

Ivanova O. M.

Leading Researcher, Candidate of Agricultural Sciences

Tambov Research Institute of Agriculture, Branch of the Federal Research Center named after I.V. Michurin,

Russia, Tambov

Vetrova S. V.

Researcher

Tambov Research Institute of Agriculture- branch of the Federal State Budgetary Scientific Institution "I.V. Michurin Federal Research Center"

Russia, Tambov

Erofeev S.A.

Leading Researcher

Tambov Research Institute of Agriculture- branch of the Federal State Budgetary Scientific Institution "I.V. Michurin Federal Research Center"

Russia, Tambov

Abstract

The article presents promising sunflower breeding lines from the Tambov Research Institute of Agricultural Sciences, a branch of the I.V. Michurin Federal State Budgetary Scientific Research Center. Over the years, 4 promising breeding samples of the Institute have been identified in the nursery of competitive variety testing (KSI). The yield of these lines averaged 2.06-2.34 t/ha over the three years of Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

research. The highest yield increase relative to the control Spartak variety was obtained from the Chakinsky 456 line, and amounted to 0.35 t/ha.

Key words: breeding, sunflower, variety, yield, weather conditions.

Экономика РФ функционирует сегодня в условиях нестабильной и весьма агрессивной внешней среды: тренды современного экономического развития связаны с рядом геополитических факторов и, прежде всего, с активными попытками санкционного воздействия зарубежных стран, направленного на дестабилизацию социально-экономического развития и снижение обороноспособности России [1].

В ближайшие годы российской экономике предстоит функционировать в условиях масштабных санкционных ограничений. Результативность и последствия этих ограничений еще предстоит оценить, поскольку в настоящее время контуры оказавшейся в санкционных условиях российской индустрии только формируются [2].

Доктрина продовольственной безопасности Российской Федерации, утверждённая указом Президента Российской Федерации В.В. Путиным 21 января 2020 года № 20, предусматривает увеличение в среднесрочной перспективе посевных площадей сортов отечественной селекции до уровня не менее 75 % [3].

При прочих равных «в передовиках» растениеводства – как по объёмам, так и по доходности – по-прежнему остаются масличные. В этом сезоне сохраняется тенденция последних лет: три крупнейшие масличные культуры (подсолнечник, соя, рапс) по маржинальности с гектара превосходят самые большие зерновые – пшеницу, ячмень и кукурузу, отмечает Дмитрий Рылько на конференции «Агротренды России 2024—2025» [4].

Подсолнечник является важнейшей масличной культурой в Российской Федерации. Подсолнечное масло широко используется как на внутреннем рынке, так и в значительном объеме направляется на экспорт. По данным Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

Росстата, в 2024 г. посевные площади подсолнечника в России составляли 9755,1 тыс. га. [5].

Повышение мирового спроса на растительное масло делает подсолнечник одной из самых привлекательных сельскохозяйственных культур для промышленного возделывания. За последние 20 лет площадь его посевов в России увеличилась втрое. Расширение посевных площадей обостряет проблему селекции и семеноводства этой культуры [6].

Перед сельским хозяйством России поставлены задачи надёжного обеспечения страны продовольственными товарами и сельскохозяйственным сырьём при наличии достаточных резервов. Эти задачи решаются за счёт создания высокопродуктивных устойчивых к биотическим и абиотическим И гибридов факторам среды сортов сельскохозяйственных растений, совершенствования технологии возделывания И расширения посевных площадей [7].

В Тамбовской государственной областной сельскохозяйственной опытной станции (сейчас Тамбовский НИИСХ – филиал ФГБНУ «ФНЦ им. И.В. Мичурина») начало селекционной работы по созданию скороспелых и раннеспелых сортов подсолнечника было развёрнуто в середине 50-х годов XX века. Институт расположен в северо-восточной части ЦЧР [8].

Исследования проводили на полях отдела селекции подсолнечника Тамбовского НИИСХ – филиал ФГБНУ «ФНЦ им. И.В. Мичурина» в 2023-2025 г., который расположен в северо-восточной части Центрально-Черноземного региона. Почвенный покров на опытном участке представлен типичным черноземом.

Объектами нашего исследования служили самоопыленные линии и сорта подсолнечника селекции Тамбовского НИИСХ – филиал ФГБНУ «ФНЦ им. И.В. Мичурина». Основной целью селекционной работы является подборка родительских форм для создания нового сорта подсолнечника,

предназначенного для выращивания в 5 регионе (ЦЧ) без применения десикантов.

В процессе работы в селекционных питомниках всесторонне изучались морфологические и биологические признаки линий и сортов подсолнечника. В питомнике конкурсного сортоиспытания изучались новые перспективные сорта подсолнечника.

Посев проводили ручными сажалками на глубину 5-6 см. Питомник конкурсного сортоиспытания закладывался в четырёхкратной повторности, площадь делянки - 50,96 м². Метод сравнения парный. Контроль - сорт Спартак, районированный для посева в хозяйствах области. Постановка полевого опыта, проведение наблюдений и учётов выполнялись в соответствии с общепринятыми в растениеводстве методиками, математическая обработка урожайных данных проводилась методом дисперсионного анализа по методике Б.А. Доспехова (1985) и с помощью программы «Statistica 6,0» (Дискриминантный анализ, 1997).

Тамбовская область имеет умеренно континентальный климат. В последние годы наблюдается его потепление. Смена климата уже отчетливо проявляется в увеличении температуры воздуха (табл. 1).

Таблица 1 - Погодные условия 2023-2025 гг.

Год	Среднесуточная температура, ⁰ С				Осадки, мм			
	посев-	всходы-	цветение-	посев-	посев-	всходы-	цветение-	посев-
	всходы	цветение	физ.созр.	созрев.	всходы	цветение	физ.созр.	созрев.
2023	18,6	16,6	21,5	18,6	27,9	133,9	92,3	254,1
2024	16,0	21,3	21,5	20,9	12,5	18,4	43,3	74,2
2025	10,5	16,4	21,2	17,5	24,3	158,8	90,0	273,1

Начиная с 2023 года среднесуточная температура воздуха за период посев-созревание превышала средние многолетние показатели. Исключением стал 2025 год: температура воздуха за период посев-всходы была ниже на 4,2, всходы-цветение на 2,2, за период посев-созревание на 1,0 $^{\circ}$ С. Количество Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

выпавших осадков во все фазы роста и развития растений превышало среднемноголетние данные. За период посев-созревание превышение среднемноголетней нормы составило 48,5 %.

В таблице 2 приведены многолетние данные метеорологических условий за период роста и развития сортов подсолнечника. При сравнении данных таблиц 1-2, видно, что за период посев-физ. созревание в 2022 году количество выпавших осадков составило 56,2 %, в 2023 – 137,9 % а в 2024 всего 40,6 % от нормы, при повышенной температуре воздуха на 1,5, 0,1° и 2,4°C соответственно по годам исследований.

Таблица 2 – Многолетние данные 1952-	-2025 1	ΓΓ.
--------------------------------------	---------	-----

Межфазные периоды	Кол-во дней	Ср. сут. температура воздуха, ⁰ С	Σ ср. сут. температур, ${}^{0}{ m C}$	Осадки, мм
Посев-всходы	12,4	14,7	182,9	17,1
Всходы- цветение	59,9	18,6	1117,5	109,8
Цветение- созревание	37,8	19,4	734,4	52,7
Посев-	110,2	18,5	2036,3	183,9

Таким образом, по данным таблиц 1 и 2 видно, что погодные условия за период проведения исследований отличались от среднемноголетних значений, что даёт возможность наиболее объективно оценить полученный селекционный материал.

Основное направление в селекционной работе с подсолнечником — это повышение продуктивности и скороспелость. Создание для сельхозпроизводителей скороспелых форм, созревающих в условиях ЦЧР без применения десикантов является одной из приоритетных задач отдела.

В таблице 3 показаны результаты испытаний выделившихся по урожайности перспективных линий подсолнечника в КСИ за период 2023-2025 года.

Урожайность новых линий подсолнечника за 2023-2025 год изучения была различной, и в среднем составила от 2,06 т/га у линии Чакинский 476, до 2,34 у линии Чакинский 456. Самыми высокоурожайными были две линии: 456 и 472. Превышение сорта-стандарта Спартак составило 0,25–0,35 т/га. Наивысшая урожайность была в 2025 году у линии 456 – 2,53 т/га.

Таблица 3. Урожайность перспективных сортов подсолнечника в КСИ

Сорта	Урожайность, т/га						
Сорти	2023	2024	2025	среднее	+, - к контролю		
Чакинский 450	2,32	1,99	1,98	2,10	+ 0,11		
Чакинский 456	2,15	2,33	2,53	2,34	+ 0,35		
Чакинский 472	2,25	2,39	2,07	2,24	+ 0,25		
Чакинский 476	1,99	2,11	2,07	2,06	+ 0,07		
Спартак, к	1,92	2,10	1,94	1,99			

Результаты исследований ПО селекции подсолнечника позволят полученные экспериментальные подборе использовать данные при родительских форм для создания новых сортов с учётом изменяющихся агроклиматических условий Тамбовской области. В дальнейшем исследования сорта подсолнечника, созревающего созданию ПО нового условиях Центрально-Черноземного региона без применения будут десикантов расширены и продолжены.

Библиографический список

- Ключников, А. С. Недостатки и перспективы развития экономики России в условиях геополитических ограничений // Молодой ученый. 2017. № 28 (162). С. 57-61.
- 2. Любимов, И. Л. Технологии и человеческий капитал в санкционной экономике // Экономическая политика. 2022. Т. 17, № 6. С. 40-67. DOI 10.18288/1994-5124-2022-6-40-67.

- 3. Паспеков Д.И., Тевченков А.А., Зеленцов С.В., Мошненко Е.В., Трунова М.В., Будников Е.Н., Саенко Г.М., Ефименко С.Г. Особенности реакции очень раннего в Западном Предкавказье сорта сои Своя на широтные и климатические условия Центрального Черноземья // Масличные культуры. 2024. Вып. 4 (200). С. 25–31. DOI 10.25230/2412-608X-2024-4-200-25-31.
- 4. Тимакова К. Год погодных стресс-тестов. Чем запомнился уходящий 2024-й // BETAREN agro. №11 (64). 2024. С. 21-24.
- 5. Костина Е. Е., Ткаченко О. В. Оптимизация метода эмбриокультуры in vitro для использования в селекции подсолнечника // Аграрный научный журнал. 2025. № 9. С. 32–36. https://doi.org/10.28983/asj.y2025i9pp32-36.
- 6. Генетическая идентификация линий и гибридов подсолнечника Helianthus annuus L. на основе мультиплексного микросателлитного анализа / И. А. Шилов, Н. С. Велишаева, Ю. В. Анискина и др. // Достижения науки и техники АПК. 2023. Т. 37. №1. С. 10–15. doi: 10.53859/02352451_2023_37_1_10.
- 7. Волгин В.В., Децына А.А. Наследование признаков урожайности семян подсолнечника // Масличные культуры. 2025. Вып. 1 (201). С. 102–118. DOI 10.25230/2412-608X-2025-1-201-102-118.
- 8. Шабалкин А.В., Иванова О.М., Ерофеев С.А., Ветрова С.В. Селекция подсолнечника в Тамбовском НИИСХ: история и достижения (70 лет пути) // Масличные культуры. 2022. Вып. 2 (190). С. 96–101.

Оригинальность 79%