УДК. 691

СВОЙСТВА БЕТОНОВ НА ОСНОВЕ КОМПОЗИЦИОННОГО БЕСЦЕМЕНТНОГО ВЯЖУЩЕГО

Романенко И.И.,

к. т.н., доцент

Пензенский государственный университет архитектуры и строительства

Россия, г. Пенза

Петровнина И.Н.,

к. т.н., доцент

Пензенский государственный университет архитектуры и строительства

Россия, г. Пенза

Фатоев А.,

студент

Пензенский государственный университет архитектуры и строительства

Россия, г. Пенза

Аннотация

Бесцементные гидравлические вяжущие относятся к геополимерам, для которых характерны: высокая прочность, водостойкость, химическая стойкость и минимальные выбросы в атмосферу углекислого газа, что делает их конкурентоспособными на рынке вяжущих материалов. В исследованиях использовали доменные молотые шлаки ПО «Северсталь» и молотые щебни из карбонатных и гранитных пород с прочность по дробимости М 450 и М 800. Каменная мука из горных пород вводилось в вяжущее в количестве 10-40% от общей массы геополимера. В качестве активатора твердения применяли натриевое жидкое стекло и гидроксид натрия (NaOH). Твердение бетонов нормального твердения. Полученные проходило камере позволяют эффективно применять разработанные высокопрочные бетоны для заводского производства железобетонных изделий.

Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

Ключевые слова: вяжущее, геополимер, экологичность, активатор твердения, доменные шлаки, каменная мука, бетоны, прочность.

PROPERTIES OF CONCRETE BASED ON COMPOSITE CEMENT-FREE BINDING AGENT

Romanenko I.I.,

Ph.D., Associate Professor

Penza State University of Architecture and Civil Engineering

Russia, Penza

Petrovnina I.N.,

Ph.D., Associate Professor

Penza State University of Architecture and Civil Engineering

Russia, Penza

Fatoev A.,

Student

Penza State University of Architecture and Civil Engineering

Russia, Penza

Abstract

Cement-free hydraulic binders are geopolymers characterized by: high strength, water resistance, chemical resistance and minimal emissions of carbon dioxide into the atmosphere, which makes them competitive in the binders market. The studies used blast-furnace ground slags from PO Severstal and ground crushed rock from carbonate and granite rocks with crushing strength of M 450 and M 800. Rock flour from rocks was introduced into the binder in the amount of 10-40% of the total mass of the geopolymer. Sodium liquid glass and sodium hydroxide (NaOH) were used as a hardening activator. Concrete hardening took place in a normal hardening chamber. The obtained results allow the effective use of the developed high-strength concrete for factory production of reinforced concrete products.

Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

Keywords: binder, geopolymer, environmental friendliness, hardening activator, blast-furnace slags, rock flour, concrete, strength.

Альтернативой портландцементу на данный нет для производства бетонных и железобетонных изделий, но разрабатываются другие виды эффективно применяться изделий, вяжущего, которые ΜΟΓΥΤ ДЛЯ испытывающих воздействия химических веществ, морской воды, попеременное Это И оттаивание. позволит снизить замораживание производства портландцемента и одновременно выбросы в атмосферу углекислого газа. В то расширить применение побочных продуктов же химической, горнодобывающей, энергетической и металлургической промышленности. Таким образом, использование альтернативного материала является естественным шагом К решению задач экологического характера, экономического, а также по сохранению природных богатств регионов за счет снижения добычи материалов для производства портландцемента [4, 5, 8].

Основная цель повторного использования вторичных материалов — минимизация негативного воздействия человечества на окружающую среду. Использование неорганических промышленных побочных продуктов в производстве бетона способствуют улучшению свойств бетона и снижению себестоимости его производства [1, 2, 6].

Расширенный спрос на бетоны способствует росту использования природных сырьевых компонентов для выпуска портландцемента, а оно является энергозатратным. Выпуск портландцемента характеризуется ростом ежегодных объемов производства на 6-8% и в то же время ростом выбросов в атмосферу углекислого газа, что составляет около 1,5 млрд тонн в год [3].

Поэтому ученые разрабатывают альтернативное вяжущее портландцементу на основе вторичных ресурсов различных отраслей промышленности. Такими побочными продуктами, могут быть: летучая зола ТЭЦ, металлургические шлаки, отсев и пыль от дробления каменных Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

материалов, содосульфатные плавы и щелочные стоки от травления изложниц. Еще одна альтернативная традиционным бетонам – это геополимерный бетон (ГПБ) [4, 6].

Геополимерная технология может быть подходящей для применения на обычных предприятиях строительной индустрии по выпуску бетонов. В настоящем исследовании рассматривается использование каменной муки в производстве геополимерного бетона, поскольку он может использовать отходы каменного дробления как доломитовых, так и гранитных пород [3, 10].

Геополимерные бетоны представляют собой неорганический полимерный композит, как дополнение К традиционным бетонам на основе Термин «геополимер» был применен портландцемента. исследователем Давидовицем в 1970-х годах для обозначения вяжущего, полученного в результате реакции исходного тонко молотого сырья, содержащего кремний и алюминий с концентрированным щелочным раствором [2, 7]. Исходными материалами выступают промышленные отходы, такие как зола унос, шлаки Шелочные различных производств, И кремнеземная ПЫЛЬ. представляют собой концентрированный водный щелочной гидроксид или силикатный раствор с растворимыми щелочными металлами, обычно на основе натрия или калия.

В исследованиях использовались гранулированный доменный шлак ПО «Северсталь», измельченный в струйной мельнице до удельной поверхности $S_{yz} = 2780 \text{ cm}^2/\Gamma$, и каменная мука из доломитового и гранитного отсева. Каменную муку получали измельчением отходов дробления каменных материалов в шаровой мельнице до удельной поверхности $S_{yz} = 2600-2900 \text{ cm}^2/\Gamma$. Вяжущее готовили смешением молотого шлака с каменной мукой до однородного состава в шаровой мельнице. Время смешения 2 мин. Каменная мука в вяжущем составляла 10%, 20%, 40%.

В качестве мелкого заполнителя бетонной смеси использовали Сурский песок (речной) с модулем крупности $M_{\kappa p}=1,5-1,8.$ Модуль крупности песка получен по методике ГОСТ на основе ситового анализа.

Крупный заполнитель получен дроблением гранитного щебня фракции 20-40 мм в щековой дробилке до фракции 5-8 мм.

Активатором твердения геополимерной композиции выбраны раствор жидкого стекла (ЖС) плотностью 2,5 г/см³ и водный раствор гидроксида натрия. Суммарный расход активаторов твердения варьировался в пределах 5-8% в пересчете на сухие вещества от массы тонкомолотого вяжущего. Жидкое стекло и щёлочь смешивались в определенных пропорциях перед испытаниями и выдерживались в закрытой емкости не менее суток, а при введении в бетонную смесь разбавлялись питьевой водой до нужного значения. Проектная марка бетона в возрасте 28 суток М400. Составы, используемые в исследованиях представлены в таблице1.

Таблица 1 - Составы геополимерных бетонов

Индекс	Расход материалов на 1 м ³ , кг								Осадка	
состава	Ш	КМД	КМГ	МЗ	КЗ	ЖС	NaOH	H ₂ O	P/B	конуса, мм
	420			1200	600	102	41	<i>C</i> 1	0.22	
0	439	-	-	1300	600	103	41	6,4	0,32	90
1	395	44	-	1300	600	103	41	6,4	0,32	96
2	351	88	-	1300	600	103	41	6,4	0,32	98
3	263	176	-	1300	600	103	41	6,4	0,32	100
11	439	-	44	1300	600	103	41	6,4	0,32	95
12	395	-	88	1300	600	103	41	6,4	0,32	102
13	351	_	176	1300	600	103	41	6,4	0,32	110

Испытания на прочность кубиков размером $100 \times 100 \times 100$ мм после твердения в камере нормального твердения (влажность 90 ± 5 %, температура воздуха $+20 \pm 5$ °C) проводились в возрасте 7, 14 и 28 суток. Результаты испытаний представлены в таблице 2.

В опытах сравнивалось влияние способа отверждения геополимеров: твердение на воздухе в камере нормального твердения и влияние температурновлажностного воздействия в камере пропаривания. Для этого образцы после Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

формовки помещались в камеру для пропаривания и процесс соответствовал режиму: 3 часа выдержка при T = 20 °C; подъем температуры до 60 °C в течение 4 часов; выдержка при T = 60 °C 6 часов и снижение температуры до 20 °C в течение 3 часов, а в дальнейшем образцы твердели в камере нормального твердения.

Таблица 2 – Предел прочности при сжатии образцов в возрасте 7, 14 и 28 суток при твердении в камере нормального твердения.

	Предел прочности на сжатие, МПа, в возрасте							
Индекс состава		7 суток	1	4 суток	28 суток			
		Прирост		Прирост		Прирост		
	R _{сж}	прочности,	R_{cw}	прочности,	R_{cw}	прочности,		
		%		%		%		
0	34,7	100,00	41,0	100,00	56,5	100,00		
1	12,3	35,45	24,4	59,5	43,0	76,1		
2	20,8	59,94	31,1	75,85	57,8	102,3		
3	17,5	50,43	27,9	68,05	48,2	85,3		
11	32,2	92,8	39,8	97,07	49,5	87,6		
12	33,6	96,83	42,4	103,4	58,8	104,1		
13	37,8	108,93	48,9	119,27	60,3	110,7		

Результаты испытания на прочность представлены в таблице 3.

Таблица 3 – Предел прочности при сжатии образцов в возрасте 7, 14 и 28 суток при твердении в камере нормального твердения образцов подвергшихся термовлажностной обработки

	Предел прочности на сжатие, МПа, в возрасте						
Индекс состава	14 cy	1	28 суток				
	-	Прирост		Прирост			
	R _{сж}	прочности,	R_{cw}	прочности,			
		%		%			
0	36,8	100,00	54,1	100,00			
1	27,64	75,1	42,14	77,9			
2	29,00	78,8	54,15	100,1			
3	25,50	69,3	48,47	89,6			
11	36,43	99,0	48,20	89,1			
12	41,44	112,6	62,43	115,4			
13	46,15	125,4	68,60	126,8			

Кубики были испытаны на сжатие в возрасте 7, 14 и 28 дней на гидравлическом прессе. Из анализа результатов исследований (табл. 2) следует, Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

что геополимерные бетоны при твердении в камере нормального твердения на каменной муке из гранита достигли проектного значения по марке M400, а бетоны с каменной мукой доломитовых пород имеют прочность от контрольного состав 59-78 % в возрасте 14 суток.

В возрасте 28 суток все составы превысили проектную марку и самыми экономичными по расходу доменного шлака оказались составы № 2, 3, 12, 13. Разработанная технология получения геополимерных бетонов обеспечивает утилизацию промышленных отходов и получение продукции с прибавочной стоимостью, причем качество бетонов на основе геополимерного вяжущего не уступает свойствам бетонов на портландцементе.

Образцы бетонов, которые подвергались тепловлажностной обработке, отпускное значение набрали к 14 суткам, а в возрасте 28 суток у всех образцов показатели прочности на сжатие оказались меньше, чем у образцов твердевших весь период в камере нормального твердения. Из интерпретации приведенных выше результатов следует, что прочность геополимерного бетона увеличивается с увеличением процентного содержания каменной муки.

Таким образом, можно сделать выводы:

- получение геополимерного вяжущего с каменной мукой на основе молотых доменных шлаков позволяет получить бетоны с мелкопористой структурой;
- геополимерные бетоны, с различной дозировкой каменной муки в вяжущем и при различных способах отверждения в возрасте 28 суток твердения имели прочность больше проектного значения (40,0 МПа); объясняется это получением оптимальной микроструктуры цементной матрицы;
- геополимерные бетоны на вяжущем с каменной мукой из гранитного отсева являются оптимальными как по темпам набора прочности, так и по пределу прочности на сжатие; оптимальный расход каменной муки в вяжущем составляет 20-40%;

• геополимерный тип вяжущего является более экономичным по сравнению с портландцементом как с точки зрения энергетической, так и с экологической.

Библиографический список:

- 1. Atis C.D., Ozcan F., Kilic A., Karahan O., Bilim C., Severcan M.H. Influence of dry and wet curing conditions on compressive strength of silica fume concrete // Building and Environment, vol. 40, pp. 1678 1683, 2005.
- 2. Jian-Tong Ding and Zongjin Li. Effects of Metakaolin and Silica Fume on Properties of Concrete //ACI materials journals, vol. 99, pp. 393 398, 2002.
- 3. McCaffrey R. Climate Change and the Cement Industry, Global Cement and Lime Magazine (Environmental Special Issue), 2002, pp. 15-19.
- 4. Prokopski G., Langier B. Effect of water/cement ratio and silica fume addition on the fracture toughness and morphology of fractured surfaces of gravel concretes // Cement and Concrete Research, vol. 30 pp.1427 1433, 2000.
- 5. Романенко И.И., Фадин А.И. Строительные материалы на основе активированного сталеплавильного шлака // Региональная архитектура и строительство. 2023. № 1 (54). С. 85 92.
- 6. Романенко И.И., Петровнина И.Н. Кинетика набора прочности бетонов на композиционном вяжущем, наполненном молотым доменным граншлаком.Инженерный вестник Дона. 2023. № 11 (107). С. 598 606.
- 7. Thanongsak N., Watcharapong W., Arnon C. Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete, Fuel, vol. 89, 2010, pp. 768–774.
- 8. Thomasa M.D.A., Shehataa M.H., Shashiprakasha S.G., Hopkinsb D.S., Cail K. Use of ternary cementitious systems containing silica fume and fly ash in concrete // Cement and Concrete Research, vol. 29, pp. 1207 1214, 1999.

- 9. Фадин А.И., Романенко И.И. Научно-технологические и организационно-технические аспекты производства строительных материалов на основе сталеплавильных шлаков // Бетон и железобетон. 2024. № 2 (621). С. 33-41.
- 10. Wong H.S., Razak H. Abdul. Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance // Cement and Concrete Research, vol. 35, pp. 696–702, 2005.

Оригинальность 82%