УДК 512.552

ОБ ОДНОМ КОММУТАТОРЕ В АССОЦИАТИВНОМ КОЛЬЦЕ

Дерябина Г.С.

к.ф.-м.н., доцент,

Московский Государственный Технический Университет им. Н.Э. Баумана, Москва, Россия

Аннотация

Пусть ${\bf R}$ — ассоциативное и коммутативное кольцо с единицей, ${\bf A}$ — ассоциативная ${\bf R}$ -алгебра. Пусть $L_n=L_n({\bf A})$ — ${\bf R}$ -подмодуль в ${\bf A}$, порожденный всеми левонормированными коммутаторами $[a_1,\ldots,a_n]$ ($a_i\in {\bf A}$). Пусть $T^{(n)}=T^{(n)}({\bf A})$ — двусторонний идеал в ${\bf A}$, порожденный множеством L_n . В 2013 году ${\bf A}$. Бапат и Д. Джордан доказали, что если $1/6\in {\bf R}$, то $[T^{(3)},{\bf A}]\subseteq L_4$. Цель данной заметки — дать новое, более простое доказательство этого результата.

Ключевые слова: ассоциативное кольцо, коммутатор длины n, присоединенное кольцо Ли.

ON A CERTAIN COMMUTATOR IN AN ASSOCIATIVE RING

Deryabina G.S.

PhD, Associate Professor,

Bauman Moscow State Technical University,

Moscow. Russia

Abstract

Let \mathbf{R} be an associative and commutative unital ring and let \mathbf{A} be an associative \mathbf{R} -алгебра. Let $L_n = L_n(\mathbf{A})$ be an \mathbf{R} -submodule in \mathbf{A} spanned by all left-normed commutators $[a_1, \ldots, a_n]$ $(a_i \in \mathbf{A})$. Let $T^{(n)} = T^{(n)}(\mathbf{A})$ be the two-sided ideal in \mathbf{A} generated by L_n . In 2013 Bapat and Jordan proved that if $1/6 \in \mathbf{R}$ then $[T^{(3)}, \mathbf{A}] \subseteq L_4$. The aim of the present note is to give a new, simpler proof of this result.

Keywords: associative ring, commutator of length n, associated Lie ring.

Введение

Пусть \mathbf{R} — ассоциативное и коммутативное кольцо с единицей, \mathbf{A} — ассоциативная \mathbf{R} -алгебра с единицей. Пусть $[a_1, a_2] = a_1a_2 - a_2a_1$ $(a_1, a_2 \in \mathbf{A})$. Для n > 2 определим левонормированный коммутатор $[a_1, a_2, \ldots, a_n]$ рекурсивно равенством $[a_1, a_2, \ldots, a_{n-1}, a_n] = [[a_1, a_2, \ldots, a_{n-1}], a_n]$ $(a_i \in \mathbf{A})$. Определим $L_n = L_n(\mathbf{A})$ как \mathbf{R} -подмодуль в \mathbf{A} , порожденный всеми коммутаторами $[a_1, \ldots, a_n]$ $(a_i \in \mathbf{A})$. Пусть $T^{(n)} = T^{(n)}(\mathbf{A})$ — двусторонний идеал в \mathbf{A} , порожденный множеством L_n , то есть $T^{(n)} = \mathbf{A}L_n\mathbf{A} = \mathbf{A}L_n$.

Исследование нижнего центрального ряда

$$\mathbf{A} = \mathbf{L}_1 \supset \mathbf{L}_2 \supset \mathbf{L}_3 \supset \ldots \supset \mathbf{L}_n \supset \ldots$$

присоединенной алгебры \mathbf{A} и его факторов \mathbf{L}_n / \mathbf{L}_{n+1} было начато в 2007 году в пионерской работе Б. Фейгина и Б. Шойхета [6]. Результаты Б. Фейгина и Б. Шойхета были развиты в многочисленных статьях разных авторов, прежде всего П. Этингофа и его учеников (см., например, обзор [1] и статьи [2, 3, 5]).

В исследовании факторов L_n/L_{n+1} важную роль играет следующее утверждение, доказанное А. Бапат и Д. Джорданом в 2013 году.

Теорема (А. Бапат и Д. Джордан [2]). Пусть ${\bf R}$ — произвольное ассоциативное и коммутативное кольцо, содержащее $^{1}/_{6}$. Пусть ${\bf A}$ — произвольная ассоциативная ${\bf R}$ -алгебра. Тогда

$$[\mathbf{T}^{(3)}, \mathbf{A}] \subseteq \mathbf{L}_4.$$

Отметим, что в [2] эта теорема была доказана в случае, когда ${\bf R}$ – поле характеристики 0, однако приведенное там доказательство остается верным, когда ${\bf R}$ – ассоциативное и коммутативное кольцо, содержащее $^{1}/_{6}$. Теорема означает, что в алгебре Ли ${\bf A}/{\bf L}_{4}$ образ идеала ${\bf T}^{(3)}$ централен.

Цель данной заметки – дать новое, более простое, чем в оригинальной статье [2], доказательство данной теоремы.

Замечание. Приведенная выше теорема, вообще говоря, неверна, если $^{1}/_{3} \notin \mathbf{R}$.

Действительно, для любых элементов a, b, c, d, e \in **A** выполнено [[a, b, c] d, e] \in [$T^{(3)}$, **A**]. С другой стороны,

$$[[a, b, c] d, e] = [a, b, c][d, e] + [a, b, c, e] d,$$

где [a, b, c, e] $d \in T^{(4)}$, а произведение [a, b, c][d, e], вообще говоря, не лежит в $T^{(4)}$, если $^{1}/_{3} \notin \mathbf{R}$ (см. [4, 7]). Значит, в этом случае [[a, b, c] d, e], вообще говоря, не лежит в $T^{(4)}$ и тем более не лежит в $L_{4} \subseteq T^{(4)}$.

Таким образом, если $^{1}/_{3} \not\in \mathbf{R}$, то, вообще говоря, $[\mathbf{T}^{(3)}, \mathbf{A}] \not\subset \mathbf{L}_{4}$.

Вспомогательное утверждение

Пусть ${\bf A}$ – произвольное ассоциативное кольцо, пусть ${\bf u}, {\bf v} \in {\bf A}$. Будем писать ${\bf u} \equiv {\bf v} \pmod{L_4}$, если ${\bf u} = {\bf v} + {\bf w}$, где ${\bf w} \in {\bf L}_4$.

Лемма. Пусть u, v, x, y, z \in **A**; пусть σ – произвольная подстановка на множестве $\{x, y, z\}$. Тогда

$$[[u, v, \sigma(x)] \sigma(y), \sigma(z)] \equiv \operatorname{sgn}(\sigma) [[u, v, x] y, z] \pmod{L_4}$$

где sgn (σ) равно 1 для четных подстановок σ и -1 для нечетных подстановок σ .

Другими словами, по модулю L_4 выражение [[u, v, x] y, z] антисимметрично относительно перестановок элементов x, y, z.

Доказательство. Хорошо известны и легко могут быть проверены следующие тождества:

(1)
$$[u, vw] = v [u, w] + [u, v] w (u, v, w \in A),$$

(2)
$$[uv, w] + [vw, u] + [wu, v] = 0 \quad (u, v, w \in A).$$

Пусть $u, v, x, y, z \in A$. Из (1) следует, что

$$[u, v, xy, z] = [[[u, v], xy], z] = [(x [[u, v], y] + [[u, v], x] y), z] =$$

$$= [(x [[u, v], y]), z] + [([[u, v], x] y), z] =$$

$$= [[[u, v], y] x, z] - [[[u, v], y], x, z] + [[[u, v], x] y, z],$$

откуда вытекает, что

$$[[u,v,y]\;x,z]+[[u,v,x]\;y,z]=[u,v,xy,z]+[[[u,v],y],x,z]\equiv 0\;mod(L_4),$$
 то есть

(3)
$$[[u, v, y] x, z] \equiv -[[u, v, x] y, z] \mod(L_4).$$

С другой стороны, из (2) вытекает, что

$$[[u, v, x] y, z] + [yz, [u, v, x]] + [z [u, v, x], y] = 0,$$

то есть

$$[[u, v, x] y, z] - [[u, v, x], yz] + [[u, v, x] z, y] - [[[u, v, x], z], y] = 0,$$

поэтому

$$[[u, v, x] \ y, z] + [[u, v, x] \ z, y] = [[u, v, x], yz] + [[[u, v, x], z], y] \equiv 0 \ mod \ (L_4).$$

Таким образом,

(4)
$$[[u, v, x] y, z] \equiv -[[u, v, x] z, y] \mod (L_4).$$

Из (3) и (4) следует, что по модулю L_4 выражение [[u, v, x] y, z] антисимметрично относительно транспозиций (xy) и (yz). Эти транспозиции порождают всю группу подстановок S_3 на множестве $\{x, y, z\}$. Если $\sigma \in S_3$ – четная подстановка, то σ является произведением четного числа транспозиций (xy) и (yz), поэтому

$$[[u, v, \sigma(x)] \sigma(y), \sigma(z)] \equiv [[u, v, x] y, z] \pmod{L_4}.$$

Аналогично, если $\sigma \in S_3$ — нечетная подстановка, то σ — произведение нечетного числа транспозиций (ху) и (уz) и

$$[[u, v, \sigma(x)] \sigma(y), \sigma(z)] \equiv -[[u, v, x] y, z] \pmod{L_4}.$$

Лемма доказана.

Доказательство теоремы.

Заметим, что каждый элемент из $[T^{(3)}, \mathbf{A}]$ является суммой элементов вида [[a, b, c] d, e], где $[a, b, c, d, e \in \mathbf{A}]$, поэтому для доказательства теоремы достаточно показать, что $[[a, b, c] d, e] \in \mathbf{L}_4$ для любых $[a, b, c, d, e] \in \mathbf{A}$.

Пусть a, b, c, d, e – произвольные элементы алгебры ${\bf A}$. По тождеству Якоби

$$[[a, b, c] d, e] + [[b, c, a] d, e] + [[c, a, b] d, e] = 0,$$

откуда

$$[[a, b, c] d, e] = -[[c, a, b] d, e] + [[c, b, a] d, e].$$

По лемме

- [[c, a, b] d, e] + [[c, b, a] d, e]
$$\equiv$$
 - [[c, a, d] e, b] + [[c, b, d] e, a] (mod L₄), a так как [u, v] = - [v, u] (u, v \in **A**), то

$$-[[c, a, d] e, b] + [[c, b, d] e, a] = [[d, [c, a]] e, b] - [[d, [c, b]] e, a],$$

так что

$$[[a, b, c] d, e] \equiv [[d, [c, a]] e, b] - [[d, [c, b]] e, a] \pmod{L_4}.$$

Так как

$$[[d, [c, a]] e, b] = [[d, c, a] e, b] - [[d, a, c] e, b],$$

$$[[d, [c, b]] e, a] = [[d, c, b] e, a] - [[d, b, c] e, a],$$

а, по лемме,

$$[[d, c, a] e, b] - [[d, a, c] e, b] \equiv [[d, c, e] b, a] - [[d, a, b] c, e] \pmod{L_4},$$

$$[[d, c, b] e, a] - [[d, b, c] e, a] \equiv [[d, c, e] a, b] - [[d, b, a] c, e] \pmod{L_4}$$

TO

$$[[d, [c, a]] e, b] - [[d, [c, b]] e, a] =$$

$$= [[d, c, a] e, b] - [[d, a, c] e, b] - [[d, c, b] e, a] + [[d, b, c] e, a] \equiv$$

$$\equiv [[d, c, e] b, a] - [[d, a, b] c, e] - [[d, c, e] a, b] + [[d, b, a] c, e] \pmod{L_4}.$$

По лемме,

$$[[d, c, e] b, a] \equiv -[[d, c, e] a, b] \pmod{L_4},$$

а с другой стороны

$$-[[d, a, b] c, e] + [[d, b, a] c, e] = -[[d, [a, b]] c, e],$$

поэтому

$$[[d, c, e] b, a] - [[d, a, b] c, e] - [[d, c, e] a, b] + [[d, b, a] c, e] \equiv$$

$$\equiv -2 [[d, c, e] a, b] - [[d, [a, b]] c, e] (mod L_4) = -2 [[d, c, e] a, b] + [[a, b, d] c, e],$$

так что

$$[[a, b, c] d, e] \equiv -2 [[d, c, e] a, b] + [[a, b, d] c, e] \pmod{L_4}.$$

Так как, по лемме,

$$[[a, b, d] c, e] \equiv -[[a, b, c] d, e] \pmod{L_4},$$

TO

$$[[a, b, c] d, e] \equiv -2 [[d, c, e] a, b] - [[a, b, c] d, e] \pmod{L_4},$$

то есть

(5)
$$2[[a, b, c] d, e] \equiv -2[[d, c, e] a, b] \pmod{L_4}$$
.

Аналогично,

(6)
$$2[[a, b, d] e, c] \equiv -2[[e, d, c] a, b] \pmod{L_4},$$

(7)
$$2[[a, b, e] c, d] \equiv -2[[c, e, d] a, b] \pmod{L_4}$$
.

Суммируя левые части сравнений (5), (6) и (7) и используя лемму, получим

$$2([[a, b, c] d, e] + [[a, b, d] e, c] + [[a, b, e] c, d]) \equiv 6[[a, b, c] d, e] \pmod{L_4}.$$

С другой стороны, суммируя правые части сравнений (5), (6) и (7) и используя тождество Якоби, получим

$$-2([[d, c, e] a, b] + [[e, d, c] a, b] + [[c, e, d] a, b]) =$$

$$= -2([([d, c, e] + [c, e, d] + [e, d, c]) a, b]) = 0.$$

Таким образом,

6 [[a, b, c] d, e]
$$\equiv 0 \pmod{L_4}$$
,

то есть

$$6[[a, b, c] d, e] \in L_4$$

для любых a, b, c, d, e $\in L_4$. Так как $^1/_6 \in \mathbf{R}$, получаем, что

$$[[a, b, c] d, e] \in L_4$$

для любых a, b, c, d, $e \in L_4$, что и требовалось. Теорема доказана.

Библиографический список

- 1. Abughazalah N., Etingof P. On properties of the lower central series of associative algebras / N. Abughazalah, P. Etingof // Journal of Algebra and Its Applications. 2016. V. 15. 1650187 (24 pages).
- 2. Bapat A., Jordan D. Lower central series of free algebras in symmetric tensor categories / A. Bapat, D. Jordan // Journal of Algebra. 2013. V. 373. P. 299–311.
- 3. Bhupatiraju S., Etingof P., Jordan D., Kuszmaul W., Li J. Lower central series of a free associative algebra over the integers and finite fields / S. Bhupatiraju, P. Etingof, D. Jordan, W. Kuszmaul, J. Li // Journal of Algebra. 2012. V. 372. P. 251–274.
- 4. Deryabina G., Krasilnikov A. The torsion subgroup of the additive group of a Lie nilpotent associative ring of class 3 / G. Deryabina, A. Krasilnikov // Journal of Algebra. 2015. V. 428. P. 230–255.
- 5. Etingof P., Kim J., Ma X. On universal Lie nilpotent associative algebras / P. Etingof, J. Kim, X. Ma // Journal of Algebra. 2009. V. 321. P. 697–703.
- 6. Feigin B., Shoikhet B. On [A, A] / [A, [A, A]] and on W_n -action on the consecutive commutators of free associative algebras / B. Feigin, B. Shoikhet // Mathematical Research Letters. 2007. V. 14. P. 781–795.
- 7. Krasilnikov A. The additive group of a Lie nilpotent associative ring / A. Krasilnikov // Journal of Algebra. 2013. V. 392. P. 10–22.

Оригинальность 86%